T-14. Provide Electric Vehicle Charging Infrastructure

GHG Mitigation Potential

Up to 11.9% of GHG emissions from vehicles accessing the commercial or multifamily housing building

Co-Benefits (icon key on pg. 34)

Climate Resilience

Providing electric vehicle charging infrastructure increases fuel redundancy for electric vehicles even if an extreme weather event disrupts other fuel sources. Electric vehicles could also provide benefits to buildings and the grid, such as emergency backup, energy reserves, and demand response.

Health and Equity Considerations

Differential costs of PHEVs compared to conventional vehicles are decreasing over time, but at present are more expensive, which means this measure could disproportionately benefit those of greater economic means. As costs come into parity over time, this will be less of an issue. Employer, electricity provider, and state incentives for PHEV purchase could help address near-term disparities.

Measure Description

Install onsite electric vehicle chargers in an amount beyond what is required by the 2019 California Green Building Standards (CALGreen) at buildings with designated parking areas (e.g., commercial, educational, retail, multifamily). This will enable drivers of PHEVs to drive a larger share of miles in electric mode (eVMT), as opposed to gasoline-powered mode, thereby displacing GHG emissions from gasoline consumption with a lesser amount of indirect emissions from electricity. Most PHEVs owners charge their vehicles at home overnight. When making trips during the day, the vehicle will switch to gasoline mode if/when it reaches its maximum all-electric range.

Subsector

Parking or Road Pricing/Management

Locational Context

Urban, suburban, rural

Scale of Application

Project/Site

Implementation Requirements

Parking at the chargers must be limited to electric vehicles.

Cost Considerations

The primary costs associated with electric vehicle charging infrastructure include the capital costs of purchasing and installing charging stations, electricity costs from use of stations, and maintenance costs of keeping the charging stations in working order. Costs initially fall to the station owners, either municipalities or private owners, but can be passed along to station users with usage fees. Depending on station placement and charging times required for PHEVs, businesses near charging stations can derive benefits from patronage of station users.

Expanded Mitigation Options

In addition to increasing the percentage of electric miles for PHEVs, the increased availability of chargers from implementation of this measure could mitigate consumer "range anxiety" concerns and increase the adoption and use of battery electric vehicles (BEVs), but this potential effect is not included in the calculations as a conservative assumption. Expanded mitigation could include quantification of the effect of this measure on BEV use.

GHG Reduction Formula

$$A = \frac{\mathbf{B} \times \mathbf{D} \times (\mathbf{F} - \mathbf{E}) \times (\mathbf{G} - (\mathbf{H} \times \mathbf{I} \times \mathbf{K} \times \mathbf{L}))}{-\mathbf{C} \times \mathbf{J}}$$

GHG Calculation Variables

ID	Variable	Value	Unit	Source		
Output						
A	Percent reduction in GHG emissions from vehicles accessing the office building or housing	0–11.9	%	calculated		
User Inputs						
В	Number of chargers installed at site	[]	integer	user input		
С	Total vehicles accessing the site per day	[]	integer	user input		
Constants, Assumptions, and Available Defaults						
D	Average number of PHEVs served per day per charger installed	2	integer	CARB 2019		
E	Percent of PHEV miles in electric mode without measure	46	%	CARB 2020a		
F	Percent of PHEV miles in electric mode with measure	80	%	CARB 2017		
G	Average emission factor of PHEV in gasoline mode	205.1	g CO₂e per mile	CARB 2020a; U.S. DOE 2021		
Η	Energy efficiency of PHEV in electric mode	0.327	kilowatt hours (kWh) per mile	CARB 2020b; U.S. DOE 2021		
I	Carbon intensity of local electricity provider	Tables E-4.3 and E-4.4	lb CO₂e per megawatt hour (MWh)	CA Utilities 2021		
J	Average emission factor of non-electric vehicles accessing the site	307.5	g CO₂e per mile	CARB 2020a		
К	conversion from lb to g	454	g per lb	conversion		
L	Conversion from kWh to MWh	0.001	MWh per kWh	conversion		

Further explanation of key variables:

- (D) The average number of PHEVs served per day per charger installed is 2 vehicles (CARB 2019). If the user can provide a project-specific value, they should replace the default in the GHG reduction formula.
- (E) Based on the EMFAC2017 model (v1.0.3), 46 percent of miles traveled by PHEVs in California are eVMT, and 54 percent are in gasoline mode (CARB 2020a).

- (F) A review of EV user surveys and analytics included in the CARB's Advanced Clean Cars Mid-Term Report suggest that PHEV owners can reach 80 percent eVMT with access to adequate supportive charging infrastructure (CARB 2017).
- (G) As described for (J), the average GHG emission factor for gasoline vehicles is 307.5 grams of CO₂e per mile.
- The fuel efficiency of a PHEV in gasoline mode is calculated as 66.7 percent of the fuel consumption rate of a gasoline vehicle, based on the assumption that a gasoline hybrid vehicle has 50 percent higher fuel economy (miles per gal [mpg]) than a comparable gasoline vehicle, based on a comparison of the gasoline and hybrid Toyota Camry and Corolla models (U.S. DOE 2021). This percentage is applied to the average GHG emission factor for gasoline vehicles to determine the average emission factor for PHEVs in gasoline mode as (66.7%×307.5 g CO₂e per mile). If the user can provide a project-specific value by running EMFAC based on the future year of a project, they should replace the default in the GHG reduction formula.
- (H) Scaled from a light-duty automobile gasoline equivalent fuel economy 30.3 mpg (CARB 2020a), an energy efficiency ratio (EER) of 2.5 (CARB 2020b), and an assumption of 33.7 kWh electricity per gallon of gasoline (U.S. DOE 2021).
- (I) GHG intensity factors for major California electricity providers are provided in Tables E-4.3 and E-4.4 in Appendix C. If the project study area is not serviced by a listed electricity provider, or the user is able to provide a project-specific value (i.e., for the future year not referenced in Appendix C), the user should replace the default in the GHG calculation formula. If the electricity provider is not known, the user may elect to use the statewide grid average carbon intensity.
- (J) The average GHG emission factor for non-electric vehicles accessing the site was calculated in terms of CO₂e per mile using EMFAC2017 (v1.0.3). The model was run for a 2020 statewide average of LDA, LDT1, and LDT2 vehicles using diesel and gasoline fuel. The running emission factors for CO₂, CH₄, and N₂O (CARB 2020a) were multiplied by the corresponding 100-year GWP values from the IPCC's Fourth Assessment Report (IPCC 2007). If the user can provide a project-specific value (i.e., for a future year and project location), the user should run EMFAC to replace the default in the GHG reduction formula.

GHG Calculation Caps or Maximums

Measure Maximum

 (A_{max}) The percent reduction in GHG emissions (A) is capped at 11.9 percent, which is based on the following assumptions used to generate a maximum scenario:

 (B) – number of chargers installed = 20. CALGreen provides a non-residential voluntary Tier 2 measure that requires projects with 201 or more parking spaces to allocate 10 percent of total parking spaces for "EV Capable" parking spaces (or 20 parking spaces) (CBSC 2019). Note that EV Capable parking spaces do not actually have EV chargers installed, though they do have electrical panel capacity, a dedicated branch circuit, and a raceway to the EV parking spot to support future installation of charging stations. Therefore, using the number of EV Capable parking spaces as a proxy for EV chargers as a high-end estimate is conservative.

- (C) total vehicles accessing the site = 200. Per the CALGreen voluntary measure, the number of total parking spaces that correspond with 20 "EV Capable" parking spaces is 201.
- (D) PHEVs served per day per charger installed = 7. This value is the max (D_{max}). This assumes that all PHEV drivers would coordinate sharing of the limited number of chargers at the site. Value is based on data from the National Renewable Energy Laboratory (CARB 2019).
- (I) carbon intensity of local electricity provider = 0 lb CO₂e per MWh. This assumes that the local electricity provider is powered 100 percent by renewables and thus has a carbon intensity of zero.

Subsector Maximum

 $(\sum A_{max_{T-14 through T-16}} \le 35\%)$ This measure is in the Parking or Road Pricing/Management subsector. This subcategory includes Measures T-14 through T-16. The VMT reduction from the combined implementation of all measures within this subsector is capped at 35 percent.

Example GHG Reduction Quantification

The user will install electric vehicle chargers at their proposed office or multifamily housing development, which will enable employees or residents with PHEVs to drive a larger share of miles in electric mode, as opposed to gasoline-powered mode, thereby displacing GHG emissions from gasoline consumption with a lesser amount of indirect emissions from indirect electricity. In this example, 20 chargers (B) will be installed at a workplace with 200 daily employee vehicles accessing the site (C). The electricity provider for the project area is the Sacramento Municipal Utility District (SMUD) and the analysis year is 2022. The carbon intensity of electricity is therefore 344 lb CO₂e per MWh (I). The GHG impact is calculated as a 3.4 percent reduction from the total emissions from vehicles accessing the site.

$$A = \frac{20 \times 2\frac{\text{PHEVs}}{\text{charger}\cdot\text{day}} \times (80\% - 46\%) \times (205.1 \ \frac{\text{g CO}_2\text{e}}{\text{miles}} - (0.327\frac{\text{kWh}}{\text{mile}} \times 344 \ \frac{\text{lb CO}_2\text{e}}{\text{MWh}} \times 454\frac{\text{g}}{\text{lb}} \times 0.001\frac{\text{MWh}}{\text{kWh}}))}{-200 \text{ vehicles} \times 307.5 \ \frac{\text{g CO}_2\text{e}}{\text{miles}}} = 3.4\%$$

Quantified Co-Benefits

While the measure will achieve fuel savings, it will also increase electricity consumption. This section defines the methods for quantifying Improved Local Air Quality and fuel savings, as well as increased electricity consumption.

_____ Improved Local Air Quality

Local criteria pollutants will be reduced by the reduction in fossil fuel combustion. The percent reduction in criteria pollutants can be calculated using the GHG reduction formula. Electricity supplied by statewide fossil-fueled or bioenergy power plants will generate criteria pollutants. However, because these power plants are located throughout the state, electricity consumption from vehicles charging will not generate localized criteria pollutant emissions. Consequently, for the quantification of criteria pollutant emission reductions, either the electricity portion of the equation can be removed, or the electricity intensity (I) can be set to zero.

Fuel Savings (Increased Electricity)

The percent reduction in vehicle fuel consumption would be the same as the percent reduction in criteria pollutant emissions. The percent increase in electricity use (M) from this measure can be calculated as follows.

Electricity Use Increase Formula

$$M = \frac{\mathbf{B} \times \mathbf{D} \times (\mathbf{F} - \mathbf{E}) \times \mathbf{J} \times \mathbf{N} \times \mathbf{O}}{-\mathbf{C} \times \mathbf{P}}$$

Electricity Use Increase Calculation Variables

ID	Variable	Value	Unit	Source			
Output							
М	Increase in electricity from PHEVs	[]	%	calculated			
User Inputs							
Ν	Existing electricity consumption of project/site	[]	kWh per year	user input			
0	Days per year with vehicles accessing the site	260–365	days per year	user input			
Ρ	Average annual VMT of vehicles accessing the site	[]	miles per day per vehicle	user input			
Constants, Assumptions, and Available Defaults							
	None						

Further explanation of key variables:

- (N) The user should take care to properly quantify building electricity using accepted methodologies (such as CalEEMod).
- (O) If the proposed development is a workplace in which employees access the site an average of 5 days per week, the user should input 260 workdays. If the development is multifamily dwelling, the user should input 365 days.
- Please refer to the GHG Calculation Variables table above for definitions of variables that have been previously defined.

Sources

 California Air Resources Board (CARB). 2017. Advanced Clean Cars Mid-Term Report, Appendix G: Plug-in Electric Vehicle In-Use and Charging Data Analysis. Available:

https://ww2.arb.ca.gov/resources/documents/2017-midterm-review-report. Accessed: January 2021.

 California Air Resources Board (CARB). 2019. Final Sustainable Communities Strategy Program and Evaluation Guidelines Appendices. November. Available:

https://ww2.arb.ca.gov/sites/default/files/2019-

11/Final%20SCS%20Program%20and%20Evaluation%20Guidelines%20Appendices.pdf. Accessed: January 2021.

- California Air Resources Board (CARB). 2020a. EMFAC2017 v1.0.3. August. Available: https://arb.ca.gov/emfac/emissions-inventory. Accessed: January 2021.
- California Air Resources Board (CARB). 2020b. Unofficial electronic version of the Low Carbon Fuel Standard Regulation. Available: https://ww2.arb.ca.gov/sites/default/files/2020-07/2020_lcfs_fro_oal-approved_unofficial_06302020.pdf
- California Air Resources Board (CARB). 2021. OFFROAD2017–ORION. Available: https://arb.ca.gov/emfac/emissions-inventory. Database queried by Ramboll and provided electronically to ICF. March 2021.
- California Utilities. 2021. Excel database of GHG emission factors for delivered electricity, provided to the Sacramento Metropolitan Air Quality Management District and ICF. January through March 2021.
- California Building Standards Commission (CBSC). 2019. Green Building Standards Code, Title 24, Part 11. Appendix A5 – Nonresidential Voluntary Measures. Table A5.601 Nonresidential Buildings: Green Building Standards Code Proposed Performance Approach. July. Available: https://codes.iccsafe.org/content/CAGBSC2019/appendix-a5-nonresidential-voluntary-measures. Accessed: May 2021.
- Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp. Available: https://www.ipcc.ch/report/ar4/wg1/. Accessed: January 2021.
- U.S. Department of Energy (U.S. DOE). 2021. Download Fuel Economy Data. January. Available: https://www.fueleconomy.gov/feg/download.shtml. Accessed: January 2021.