T-19-A. Construct or Improve Bike Facility

GHG Mitigation Potential

Co-Benefits (icon key on pg. 34)

0.8%

Up to 0.8% of GHG emissions from vehicles parallel roadways

Climate Resilience

Constructing and improving bike facilities can incentivize more bicycle use and decrease vehicle use, which have health benefits and can thus improve community resilience. This can also improve connectivity between residents and resources that may be needed in an extreme weather event.

Health and Equity Considerations

Prioritize low-income and underserved areas and communities with lower rates of vehicle ownership or fewer transit options. Make sure that the bicycle facility connects to a larger existing bikeway network that accesses destinations visited by low-income or underserved communities.

Measure Description

This measure will construct or improve a single bicycle lane facility (only Class I, II, or IV) that connects to a larger existing bikeway network. Providing bicycle infrastructure helps to improve biking conditions within an area. This encourages a mode shift on the roadway parallel to the bicycle facility from vehicles to bicycles, displacing VMT and thus reducing GHG emissions. When constructing or improving a bicycle facility, a best practice is to consider local or state bike lane width standards. A variation of this measure is provided as T-19-B, Construct or Improve Bike Boulevard.

Subsector

Neighborhood Design

Locational Context

Urban, suburban

Scale of Application

Plan/Community. This measure reduces VMT on the roadway segment parallel to the bicycle facility (i.e., the corridor). An adjustment factor is included in the formula to scale the VMT reduction from the corridor level to the plan/community level.

Implementation Requirements

The bicycle lane facility must be either Class I, II, or IV. Class I bike paths are physically separated from motor vehicle traffic. Class IV bikeways are protected on-street bikeways, also called cycle tracks. Class II bike lanes are striped bicycle lanes that provide exclusive use to bicycles on a roadway.

Cost Considerations

Capital and infrastructure costs for new bike facilities may be high. The local municipality may achieve cost savings through a reduction of cars on the road leading to lower infrastructure and roadway maintenance costs.

Expanded Mitigation Options

Implement alongside Measures T-22-A, T-22-B, and/or T-22-C to ensure that micromobility users can ride safely along bicycle lane facilities and not have to ride along pedestrian infrastructure, which is a risk to pedestrian safety.

GHG Reduction Formula

$$A = -\mathbf{B} \times \frac{\frac{F}{I} \times (\mathbf{C} + \mathbf{D}) \times \mathbf{E} \times \mathbf{G}}{\mathbf{H}}$$

GHG Calculation Variables

ID	Variable	Value	Unit	Source
Output				
A	Percent reduction in GHG emissions from displaced vehicles on roadway parallel to bicycle facility	0–0.8	%	calculated
User Inputs				
В	Percent of plan/community VMT on parallel roadway	0–100	%	user input
С	Active transportation adjustment factor	Table T-19.1	unitless	CARB 2020
D	Credits for key destinations near project	Table T-19.2	unitless	CARB 2020
Е	Growth factor adjustment for facility type	Table T-19.3	unitless	CARB 2020
Constants, Assumptions, and Available Defaults				
F	Annual days of use of new facility	Table T-19.4	days per year	NOAA 2017
G	Existing regional average one-way bicycle trip length	Table T-10.1	miles per trip	FHWA 2017
Η	Existing regional average one-way vehicle trip length	Table T-10.1	miles per trip	FHWA 2017
I	Days per year	365	days per year	standard

Further explanation of key variables:

- (B) The percent of total plan/community VMT within the roadway parallel to the bike facility should represent the expected total VMT generated by all land use in that area, including office, residences, retail, schools, and other uses. The most appropriate source for this data is from a local travel demand forecasting model. An alternate method uses VMT per worker or VMT per resident as calculated for SB 743 compliance and screening purposes multiplied by the population in the area.
- (C, D, and E) The active transportation adjustment factor, key destination credit, and growth factor adjustment should be looked up by the user in Tables T-19.1 through T-19.3 in Appendix C. The active transport adjustment factor is based on the existing annual average daily traffic (AADT) of the facility, length of the proposed bike facility, and the city population. The key destination credit is based on the number of key destinations within 0.5-mile of the facility. The growth factor is based on the type of proposed bicycle facility.
- (F) The annual days of use for the new facility should be looked up by users in Table T-19.4 based on the county in which the project is located. The days of use is based on the number of days per year where there is no rainfall (i.e., <=0.1 inches) (NOAA 2017).

(G and H) – Ideally, the user will calculate bicycle and vehicle trip lengths for the corridor at a scale no larger than the surrounding census tract. Potential data sources include the U.S. Census, California Household Travel Survey (preferred), or local survey efforts. If the user is not able to provide a project-specific value using one of these data sources, they have the option to input regional average one-way bicycle and vehicle trip lengths for one of the six most populated CBSAs in California provided in Table T-10.1 in Appendix C (FHWA 2017).

GHG Calculation Caps or Maximums

Measure Maximum

 (A_{max}) For projects that use CBSA data from Table T-10.1 in Appendix C, the maximum percent reduction in GHG emissions (A) is 0.8 percent. This is based on a neighborhood project the size of a large corridor (B = 100%) within the CBSA of Sacramento-Roseville-Arden-Arcade that uses the highest values for (C, D, and E) in Tables T-19.1 through T-19.3 and annual use days for Sacramento County (F) in Table T-19.4. This maximum scenario is presented in the below example quantification.

 (C_{max}) The active transportation adjustment factor (C) was determined for roadways with AADT ranging from 1 to 30,000 (CARB 2020). Roadways with AADT greater than 30,000 are generally not appropriate for bicycle facilities. Care should be taken by the user in interpreting the results from this equation for a project roadway with AADT greater than 30,000.

Subsector Maximum

($\sum A_{max_{T-18 through T-22-C}} \le 10\%$) This measure is in the Neighborhood Design subsector. This subcategory includes Measures T-18 through T-22-C. The VMT reduction from the combined implementation of all measures within this subsector is capped at 10 percent.

Example GHG Reduction Quantification

The user reduces VMT by constructing a bicycle facility that displaces vehicle trips with bicycle trips. In this example, the following assumptions are made to obtain inputs from Tables T-19.1 through T-19.3 in Appendix C:

- Percent of plan/community VMT on parallel roadway (B) = 100%. The project would establish a bike corridor the whole length of a central commercial thoroughfare. It is assumed this main street makes up the entire neighborhood.
- Active transportation adjustment factor (C) = 0.0207. Existing AADT on the roadway parallel to the proposed bicycle facility is 10,000, the facility length is 2.5 miles, and the project site is in a university town with a population of 200,000.
- Key destination credit (D) = 0.003. There are 10 key destinations within 0.25 mile of the project site.
- Growth factor adjustment (E) = 1.54. The bike facility would be a new Class IV bikeway.

The project is within the Sacramento-Roseville-Arden-Arcade CBSA and the user does not have project-specific values for average bicycle and vehicle trip lengths. Accordingly, the inputs of 2.9 miles and 10.9 miles, respectively (G and H), from Table T-10.1 in Appendix C are assumed. The user would displace GHG emissions from project study area VMT by 0.8 percent.

$$A = -100\% \times \left(\frac{\frac{307 \text{ days}}{365 \text{ days}} \times (0.0207 + 0.003) \times 1.54 \times 2.9 \text{ miles}}{10.9 \text{ miles}}\right) = -0.8\%$$

Quantified Co-Benefits

Improved Local Air Quality

The percent reduction in GHG emissions (A) would be the same as the percent reduction in NO_X , CO, NO_2 , SO_2 , and PM. Reductions in ROG emissions can be calculated by multiplying the percent reduction in GHG emissions (A) by an adjustment factor of 87 percent. See Adjusting VMT Reductions to Emission Reductions above for further discussion.

Energy and Fuel Savings

The percent reduction in vehicle fuel consumption would be the same as the percent reduction in GHG emissions (A).

VMT Reductions

The percent reduction in VMT would be the same as the percent reduction in GHG emissions (A).

- Improved Public Health

Users are directed to the ITHIM (CARB et al. 2020). The ITHIM can quantify the annual change in health outcomes associated with active transportation, including deaths, years of life lost, years of living with disability, and incidence of community and individual disease.

Sources

- California Air Resources Board (CARB). 2020. Quantification Methodology for the Strategic Growth Council's Affordable Housing and Sustainable Communities Program. September. Available: https://ww2.arb.ca.gov/sites/default/files/classic/cc/capandtrade/auctionproceeds/draft_sgc_ahsc_q m_091620.pdf. Accessed: January 2021.
- California Air Resources Board (CARB), California Department of Public Health (CDPH), and Nicholas Linesch Legacy Fund. 2020. Integrated Transport and Health Impact Model. Available: https://skylab.cdph.ca.gov/HealthyMobilityOptionTool-ITHIM/#Home. Accessed: September 17, 2021.
- Federal Highway Administration (FHWA). 2017. National Household Travel Survey–2017 Table Designer. Travel Day PT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.

 National Oceanic and Atmospheric Administration (NOAA). 2021. Global Historical Climatology Network–Daily (GHCN-Daily), Version 3. 2015-2019 Average of Days Per Year with Precipitation >0.1 Inches. Available: https://www.ncei.noaa.gov/access/search/data-search/dailysummaries?bbox=38.922,-120.071,38.338,-119.547&place=County:1276&dataTypes=PRCP&startDate=2015-01-01T00:00:00&endDate=2019-01-01T23:59:59. Accessed: May 2021.