T-29. Reduce Transit Fares

GHG Mitigation Potential

1.2%

Up to 1.2% of GHG emissions from vehicle travel in the plan/community

Co-Benefits (icon key on pg. 34)

Climate Resilience

Reducing transit fares increases the capacity of low-income populations to use transit to evacuate or access resources during extreme weather events. Reduced fares could also incentivize more people to use transit, resulting in less traffic and better allowing emergency responders to access sites. This also reduces transit system disruptions due to extreme weather events. Lower transportation costs would also increase community resilience by freeing up resources for other purposes, such as increased cooling costs.

Health and Equity Considerations

Transit fare reduction programs should first prioritize routes with higher-volume potential in underserved communities and those most reliant on transit for travel (e.g., students, persons with disabilities, seniors).

Measure Description

This measure will reduce transit fares on the transit lines serving the plan/community. A reduction in transit fares creates incentives to shift travel to transit from single-occupancy vehicles and other traveling modes, which reduces VMT and associated GHG emissions.

This measure differs from Measure T-8, *Implement Subsidized or Discounted Transit Program*, which can be offered through employer-based benefits programs in which the employer fully or partially pays the employee's cost of transit.

Subsector

Transit

Locational Context

Urban, suburban

Scale of Application

Plan/Community

Implementation Requirements

Transit fare reductions can be implemented systemwide or in specific fare-free or reduced-fare zones.

Cost Considerations

Reducing transit fares will lower the per capita income of the transit service. This may be outweighed by increased ridership, and savings on infrastructure costs due to reduced car usage. Reduced fares can be targeted to specific populations or groups, depending on need. Individuals receiving the reduced fare will obtain a cost savings.

Expanded Mitigation Options

This measure could be paired with other Transit subsector strategies (Measure T-25, Extend Transit Network Coverage or Hours, and Measure T-26, Increase Transit Service Frequency) for increased reductions.

GHG Reduction Formula

 $A = \frac{B \times C \times D \times E \times G}{F}$

GHG Calculation Variables

ID	Variable	Value	Unit	Source
Output				
A	Percent reduction in GHG emissions from vehicle travel in plan/community	0–1.2	%	calculated
User Inputs				
В	Percent reduction in transit fare with measure	0–50	%	user input
С	Percent of plan/community transit routes that receive reduced fares	0–100	%	user input
Constants, Assumptions, and Available Defaults				
D	Elasticity of transit ridership with respect to transit fare	-0.3	unitless	Handy et al. 2013
Е	Transit mode share in plan/community	Table T-3.1	%	FHWA 2017a
F	Vehicle mode share in plan/community	Table T-3.1	%	FHWA 2017a
G	Statewide mode shift factor	57.8	%	FHWA 2017a

Further explanation of key variables:

- (B) The user can calculate the percent reduction in transit fare based on the percent difference between the existing fare price and the proposed fare price.
- (C) The level of implementation refers to the fraction of transit routes that on which fare reductions are implemented. Typically, fare reductions are made system-wide, so this variable would be 100.
- (D) A policy brief summarizing the results of transit service studies reported that a 0.3 to 1.0 percent increase in transit ridership occurs for every 1.0 percent decrease in transit fares (Handy et al. 2013). To be conservative, the low end of this range is cited.
- (E and F) Ideally, the user will calculate transit and auto mode shares for a plan/community at the city scale (or larger). Potential data sources include the California Household Travel Survey (preferred) or local survey efforts. If the user is not able to provide a project-specific value using one of these data sources, they have the option to input the mode shares for transit and vehicles for one of the six most populated CBSAs in California, as presented in Table T-3.1 in Appendix C. It is likely for areas outside of the area covered by the listed CBSAs to have vehicle mode shares higher and transit mode shares lower than the values provided in the table.
- (G) Mode shift factor is an adjustment to reflect the reduction in vehicle trips associated with a reduction in person trips as some vehicles carry more than one person. It is calculated as (1/average vehicle occupancy) (FHWA 2017b).

GHG Calculation Caps or Maximums

Measure Maximum

 (A_{max}) For projects that use default CBSA data from Table T-3.1 and (B_{max}) , the maximum percent reduction in GHG emissions (A) is 1.2 percent.

(B_{max}) The percent reduction in transit fare is capped at 50 percent (SANDAG 2019).

Subsector Maximum

 $(\sum A_{max_{T-25 through T-29}} \le 15\%)$ This measure is in the Transit subsector. This subcategory includes Measures T-25 through T-29. The VMT reduction from the combined implementation of all measures within this subsector is capped at 15 percent.

Example GHG Reduction Quantification

The user reduces plan/community GHGs by reducing the costs associated with using transit, thereby encouraging a mode shift from single occupancy vehicles to transit and reducing VMT. In this example, the project is in the San Jose-Sunnyvale-Santa Clara CBSA, where the transit and vehicle mode shares would be 6.69 percent and 91.32 percent, respectively (E and F). Assuming the maximum decrease in transit fares of 50 percent (B) and implementation for all transit routes (100 percent) in the plan/community (C), the user would reduce plan/community GHG emissions from VMT by 0.6 percent.

 $A = \frac{50\% \times 100\% \times -0.3 \times 6.69\% \times 57.8\%}{91.32\%} = -0.6\%$

Quantified Co-Benefits

Improved Local Air Quality

The percent reduction in GHG emissions (A) would be the same as the percent reduction in NO_X , CO, NO_2 , SO₂, and PM. Reductions in ROG emissions can be calculated by multiplying the percent reduction in GHG emissions (A) by an adjustment factor of 87 percent. See Adjusting VMT Reductions to Emission Reductions above for further discussion.

Energy and Fuel Savings

The percent reduction in passenger VMT would be the same as the percent reduction in GHG emissions (A).

VMT Reductions

The percent reduction in passenger vehicle fuel consumption would be the same as the percent reduction in GHG emissions (A).

Sources

- Federal Highway Administration (FHWA). 2017a. National Household Travel Survey–2017 Table Designer. Travel Day PMT by TRPTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.
- Federal Highway Administration (FHWA). 2017b. National Household Travel Survey–2017 Table Designer. Average Vehicle Occupancy by HHSTFIPS. Available: https://nhts.ornl.gov/. Accessed: January 2021.
- Handy, S., K. Lovejoy, M. Boarnet, and S. Spears. 2013. Impacts of Transit Service Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions. October. Available: https://ww2.arb.ca.gov/sites/default/files/2020-06/Impacts_of_Transit_Service_Strategies_on_Passenger_Vehicle_Use_and_Greenhouse_Gas_Emissio ns_Policy_Brief.pdf. Accessed: January 2021.
- San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool–Design Document. June. Available: https://www.icommutesd.com/docs/defaultsource/planning/tool-design-document_final_7-17-19.pdf?sfvrsn=ec39eb3b_2. Accessed: January 2021.