T-9. Implement Subsidized or Discounted Transit Program

GHG Mitigation Potential

Up to 5.5% of emissions from employee/resident vehicles accessing the site

Co-Benefits (icon key on pg. 34)

Climate Resilience

Subsidized and discounted transit programs increase the capacity of low-income populations to use transit to evacuate or access resources during an extreme weather event. They could also incentivize more people to use transit, resulting in less traffic and better allowing emergency responders to access a hazard site during an extreme weather event. Lower overall out-of-pocket costs would also help increase community resilience by freeing up resources for other purposes.

Health and Equity Considerations

Program should include all onsite workers, such as contractors, interns, and service workers.

Measure Description

This measure will provide subsidized or discounted, or free transit passes for employees and/or residents. Reducing the out-of-pocket cost for choosing transit improves the competitiveness of transit against driving, increasing the total number of transit trips and decreasing vehicle trips. This decrease in vehicle trips results in reduced VMT and thus a reduction in GHG emissions.

Subsector

Trip Reduction Programs

Locational Context

Urban, suburban

Scale of Application

Project/Site

Implementation Requirements

The project should be accessible either within 1 mile of high-quality transit service (rail or bus with headways of less than 15 minutes), 0.5 mile of local or less frequent transit service, or along a designated shuttle route providing last-mile connections to rail service. If a well-established bikeshare service (Measure T-22-A) is available, the site may be located up to 2 miles from a high-quality transit service.

If more than one transit agency serves the site, subsidies should be provided that can be applied to each of the services available. If subsidies are applied for only one service, all variable inputs below should also pertain only to the service that is subsidized.

Cost Considerations

The employer cost is the recurring, direct cost for transit subsidies. The subsidies will lower the per capita income of the transit service, decreasing the revenue of the local transit agency. This cost may be offset by increased revenue from increased ridership. The beneficiaries include the program participants saving on commuting cost, the employer reducing onsite parking expenses, and the municipality reducing cars on the road, which leads to lower infrastructure and roadway maintenance costs.

Expanded Mitigation Options

This measure could be paired with any combination of the other commute trip reduction strategies (Measures T-7 through T-13) for increased reductions.

GHG Reduction Formula

$$A = \frac{C}{B} \times G \times D \times E \times F \times H \times I$$

GHG Calculation Variables

If subsidies or discounts target employees, the GHG reduction from this measure may be limited to work-related employee trips only (i.e., home-to- work) and work-to-other, where at least one trip end is work). If residents are targeted, the GHG reductions extend to all trips.

ID	Variable	Value	Unit	Source
Output				
Α	Percent reduction in GHG emissions from employee/resident vehicles accessing the site	0–5.5	%	calculated
User Inputs				
В	Average transit fare without subsidy	[]	\$	user input
С	Subsidy amount	[]	\$	user input
D	Percent of employees/residents eligible for subsidy	0–100	%	user input
E	Percent of project-generated VMT from employees/residents	0–100	%	user input
Constants, Assumptions, and Available Defaults				
F	Transit mode share of all trips or work trips	Table T-3.1 or Table T-9.1	%	FHWA 2017
G	Elasticity of transit boardings with respect to transit fare price	-0.43	unitless	Taylor et al. 2008
Н	Percent of transit trips that would otherwise be made in a vehicle	50	%	Handy & Boarnet 2013
I	Conversion factor of vehicle trips to VMT	1.0	unitless	assumption

Further explanation of key variables:

- (B and C) The average transit fare and subsidy amount can be presented as either a fare per ride, or the cost of a monthly pass for typical transit service near the site. Pricing should be based on the expected means of subsidy implementation; for instance, if a monthly pass is provided to all residents, prices should be input on a monthly basis.
- (D) The percentage of employees/residents associated with the site who have access to the subsidy. If subsidy is provided as an employee benefit, care should be taken to account for any contract or temporary workers who do not receive such benefits.
- (E) The percentage of project-generated VMT from employees/residents is used to adjust the percent reduction in GHG emissions from the scale of employee and/or resident-generated VMT to project-generated VMT. If subsidies or discounts target employees at an office development, this value would simply be 100 percent. If the project site is a multifamily development with no onsite workers, this value would also be

100 percent. If the project site is a retail development, this value would be less than 100 percent, as it does not account for retail shopper trips to the site. The share of total VMT generated by employees for visitor-intensive uses, such as retail or medical offices, can be roughly estimated by multiplying the total number of employees by two (to account for both arrival and departure), divided by the total number of daily trips.

- (F) Ideally, the user will calculate transit mode share for work trips or all trips of a Project/Site at a scale no larger than a census tract. Potential data sources include the U.S. Census, California Household Travel Survey (preferred), or local survey efforts. Care should be taken not to present the reported commute mode share as retrieved from the American Community Survey (ACS), unless the land use is office or employment based and the tables are based on work location (rather than home location). If the subsidies or discounts target employees and their commute trips, then the mode share should use the home-to-work trip purpose. If the user is not able to provide a project-specific value using one of the data sources described above, they have the option to input the transit mode share for one of the six most populated CBSAs in California. The transit mode share for work trips by CBSA is presented in Table T-9.1 in Appendix C (FHWA 2017). The transit mode share for all trips is provided in Table T-3.1 in Appendix C.
- (G) A cross-sectional analysis of transit use in 265 urbanized areas in the U.S. found that a 0.43 percent decrease in transit boardings occurs for every 1 percent increase in transit fare price (Taylor et al. 2008). A policy brief summarizing the results of transit service strategies found this analysis to fall in the mid-point of observed, short-term values (Handy & Boarnet 2013). Price elasticities of transit demand vary based on both long-term and short-term demand, service type, and service location (Litman 2020 and Handy & Boarnet 2013).
- (H) Not all new transit trips replace a vehicle trip. The share of transit trips that would otherwise be made by private vehicle ranges from less than 5 percent to 50 percent across studies. This assumption is based on observed values for high quality BRT service under the assumption that this measure is implemented alongside marketing measures and is targeted primarily at reducing vehicle commute trips. (Handy & Boarnet 2013). Note that this study looked at service improvements rather than fare changes and is used as a proxy variable. If project-specific or location-specific information is available, it should be substituted for this assumptive variable.
- (I) The adjustment factor from vehicle trips to VMT is 1. This assumes that all vehicle trips will average out to typical trip length ("assumes all trip lengths are equal"). Thus, it can be assumed that a percentage reduction in vehicle trips will equal the same percentage reduction in VMT. Subsidies or discounts targeting commute trips may have a higher factor as they are generally longer than the trip lengths for other purposes.

GHG Calculation Caps or Maximums

Measure Maximum

 (A_{max}) The GHG reduction is capped at 5.5 percent, which is based on the following assumptions:

- (C=B) The subsidy coverage is capped at 100 percent of the typical transit fare.
- (D) All employees are eligible for the subsidy.

- (E) All project-generated VMT is from employee-generated VMT.
- (F) Employees at an office development in the San Francisco-Oakland-Hayward CBSA have a default transit mode share for work trips of 25.60 percent.

Subsector Maximum

(\sum A_{max_{T-5 through T-13} \leq 45%) This measure is in the Trip Reduction Programs subsector. This} subcategory includes Measures T-5 through T-13. The employee commute VMT reduction from the combined implementation of all measures within this subsector is capped at 45 percent.

Mutually Exclusive Measures

If this measure is selected, the user may not also take credit for either Measure T-5 or T-6. However, this measure may be implemented alongside other individual CTR measures (Measures T-7, T-8, T-10 through T-13). The efficacy of individual programs may vary highly based on individual employers and local contexts.

Example GHG Reduction Quantification

In this example, the user reduces VMT by providing all employees (D) of a proposed office development in the San Francisco-Oakland-Hayward CBSA a 100 percent transit subsidy in the form of a \$100 monthly transit pass (C=B). The user would reduce GHG emissions from VMT by 5.5 percent.

$$A = \left(\frac{\$100}{\$100} \times -0.43\right) \times 100\% \times 100\% \times 25.60\% \times 50\% \times 1 = -5.5\%$$

Quantified Co-Benefits

Improved Local Air Quality

The percent reduction in GHG emissions (A) would be the same as the percent reduction in NO_X, CO, NO₂, SO₂, and PM. Reductions in ROG emissions can be calculated by multiplying the percent reduction in GHG emissions (A) by an adjustment factor of 87 percent. See Adjusting VMT Reductions to Emission Reductions above for further discussion.

Energy and Fuel Savings

The percent reduction in vehicle fuel consumption would be the same as the percent reduction in GHG emissions (A).

VMT Reductions

The percent reduction in VMT would be the same as the percent reduction in GHG emissions (A).

Sources

- Federal Highway Administration (FHWA). 2017. National Household Travel Survey—2017 Table Designer. Travel Day PMT by TRPTRANS by HH_CBSA, Workers by WRKTRANS by HH_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.
- Handy, L. and S. Boarnet. 2013. Impacts of Transit Service Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions. Available:
 - http://www.arb.ca.gov/cc/sb375/policies/transitservice/transit brief.pdf. Accessed: January 2021.
- Litman, T. 2020. *Transit Price Elasticities and Cross-elasticities*. Victoria Transport Policy Institute. April. Available: https://www.vtpi.org/tranelas.pdf. Accessed: January 2021.
- Taylor, B., D. Miller, H. Iseki, and C. Fink. 2008. Nature and/or Nurture? Analyzing the Determinants of Transit Ridership Across US Urbanized Areas. Transportation Research Part A: Policy and Practice, 43(1), 60-77. Available:
 - https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.5311&rep=rep1&type=pdf. Accessed: January 2021.